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PROPAGATION OF PRESSURE WAVES IN A GAS–LIQUID

MEDIUM WITH A CLUSTER STRUCTURE

UDC 532.529V. E. Dontsov

Propagation of a stepwise shock wave in a liquid containing spherical gas–liquid clusters is experi-
mentally studied. Measured results are compared with available theoretical models. It is shown that
resonant interaction of gas–liquid clusters in the wave can increase the amplitude of oscillations in
the shock wave.
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Propagation of pressure waves in a liquid with gas bubbles was considered in much detail both theoretically
and experimentally [1–9]. It was shown that a nonlinear finite-length disturbance in a liquid with gas bubbles
decomposes into solitary waves (solitons). Shock waves in bubbly media can have an oscillating structure. Wave
evolution, structure, and decay were studied. A new type of wave structures (multisolitons) was found and examined
in the experiments of [10–12] in a liquid with gas bubbles of two different sizes with different ratios of bubble radii.
The influence of inhomogeneity of the gas–liquid mixture and compressibility of the liquid on the pressure-wave
structure was examined in [13, 14]. The structure and decay of moderate-amplitude pressure waves in a liquid
with bubbles of two different gases and in bubbly media with a stratified structure were experimentally studied
in [15, 16]. Generation of high-power pressure pulses by spherical bubbly clusters was numerically considered by
Kedrinskii et al. [17] who were the first to suggest the problem formulation and to explain the mechanism of shock-
wave amplification by a spherical bubbly cluster. Interaction of a two-dimensional shock wave with a spherical
bubbly cluster in a liquid was experimentally studied in [18].

In the present work, we experimentally examined the evolution and structure of a moderate-amplitude shock
wave in a liquid containing bubbly clusters.

The experiments were performed on a “shock-tube” setup (Fig. 1). The test section was a vertical thick-
walled steel tube with an inner diameter of 53 mm and a length of 1 m. A stainless-steel wire 1 mm in diameter
was located at the axis along the test section; the ends of the wire were attached to the test-section walls. The test
section was partly filled by a liquid under vacuum, which allowed us to avoid formation of gas bubbles in the liquid.
Distilled water was used as the test liquid. In the test section, water was saturated by air to the equilibrium state at
room temperature and atmospheric pressure; the experiments were performed under these conditions. Five bubbly
clusters (foam-rubber spheres 30 mm in diameter filled by the liquid with gas bubbles) were spit onto the wire by
their centers. The upper edge of the upper cluster was located at a distance of 10 mm from the liquid surface. The
centers of the remaining clusters were located exactly opposite the pressure gauges G2–G5.

The bubbly clusters were prepared on an additional setup as follows. The foam-rubber bubbles were placed
into the test volume of the setup and were saturated by distilled water under vacuum. After that air bubbles with an
elevated static pressure (as compared to the atmospheric value) were pumped through the liquid in the test section.
The liquid in the test volume was saturated by air to the equilibrium state at a given static pressure, and the gas
dissolved inside the foam-rubber spheres owing to diffusion. The time needed for equalization of concentrations of
the gas dissolved in the liquid on the sphere surface and in its center was τ ≈ 15 h (τ ≈ R2/(2D) [19], R is the
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Fig. 1. Layout of the setup: 1) test section; 2) thin wire; 3) gas–liquid cluster; 4) diaphragm; 5) high-
pressure chamber; 6) analog-to-digital converter; 7) computer; 8) bottom of the test section; 9) tank
for the liquid; 10) vacuum pump; 11) manometers and compound pressure-vacuum gauges; 12) taps;
the pressure gauges are indicated by G0–G6.

cluster radius, and D is the diffusion coefficient). When the static pressure was reduced to the atmospheric value,
gas bubbles evolved from the liquid. The bubbles stuck to the foam-rubber skeleton and formed the gas–liquid
cluster.

Note, the porosity of the foam-rubber sphere is rather high (about 98%), and its rigidity is low; hence, the
porous skeleton does not affect pressure-wave propagation [20].

Assuming that the process of incipience of gas bubbles in the cluster after the decrease in static pressure is
heterogeneous, which is valid for commonly used distilled water, we can evaluate the critical radius of the nucleus
from which the bubble starts to grow and the size of the bubble to which the nucleus grows after the decrease in
static pressure [4, 20]. For air bubbles, the diameter is d ≈ 10−4 m. Yet, gas bubbles up to d ≈ 5 · 10−4 m were
observed on the cluster surface, which could be caused by coalescence of bubbles in the course of their growth after
the decrease in static pressure.

By changing the decrease in static pressure, one can change the initial volume content of the gas in clusters ϕc.
The mean volume content of the gas in clusters was determined by the increase in volume of the liquid due to the
decrease in the initial static pressure in the medium and by the volume of clusters [20].

Stepwise pressure waves originated in air owing to breakdown of the diaphragm separating the high-pressure
chamber and the test section and propagated into the liquid. The pressure-wave profiles were registered by piezo-
electric pressure gauges located on the side surface (G1–G5) and on the test-section bottom (G6); the gauges were
flush-mounted on the inner surface of the test section. The gauge G0 was used to trigger the analog-to-digital
converter (ADC). The signals from the gauges were fed to the ADC and then were processed on a computer.

Figure 2 shows the time evolution of the pressure waves at different x distances from the point where the
shock wave enters the medium for different initial amplitudes of the waves and initial volume contents of the gas in
the clusters. Here, ∆P0 is the amplitude of the shock wave entering the liquid. It equals the amplitude of the air
shock wave reflected from the liquid surface (Fig. 2a; x < 0); ∆Pmax is the amplitude of the first oscillation of the
pressure wave in the liquid; P0 is the initial static pressure in the medium. The wave amplitudes are indicated above
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Fig. 2. Evolution of the shock wave in a gas–liquid medium with a cluster structure: (a, b) P0

= 0.101 MPa, ϕ0 = 7.5%, ϕc = 9.8%, and ∆P0 = 0.037 (a) and 0.83 MPa (b); (c, d) P0 = 0.1 MPa,
ϕ0 = 7.5%, ϕc = 0.38%, and ∆P0 = 0.037 (c) and 0.69 MPa (d); curves 1 refer to the experimental
data and curves 2 refer to the calculations by Eqs. (1) and (2).348



the wave profiles, and the time scale is shown on the abscissa axis. The gauge at a distance x = 0.495 m (Fig. 2b)
from the point of the wave entrance into the medium is flush-mounted into the test-section bottom and registers
the wave reflected from the bottom. It is seen that the initial stepwise wave is transformed into an oscillating
shock wave already at the second bubbly cluster (Fig. 2a; x = 0.105 m). As for a homogeneous bubbly mixture
[3], the amplitude of the first oscillation is 1.5 times greater than the mean pressure in the wave for low-amplitude
waves. Figure 2a (x = 0.205 and 0.305 m) shows a comparison of the shape of the first oscillation of the shock
wave (curve 1) with the shape of the soliton of an identical amplitude calculated by the Boussinesq equation for a
gas–liquid medium (curve 2) [3]:

∆P (t) = ∆Pmax sec h2(t/∆tB); (1)

∆tB = (6β/(B∆Pmax))0.5. (2)

Here ∆tB is the half-width of the calculated Boussinesq soliton, equal to the wave length from the pressure of
0.42∆Pmax to the maximum value of pressure in the wave ∆Pmax; β and B are the dispersion and nonlinearity
coefficients, respectively. For a gas–liquid medium with a cluster structure, the expressions for the coefficients in
the case of an isothermal behavior of the gas in the bubbles have the form [21]

β = R2 1 + 0.2(1− ϕc)
3ϕ0(1− ϕ0ϕc)

, B =
1− ϕ0ϕc

(ρ1(1− ϕ0) + ρ2ϕ0)ϕ0ϕc
,

where ϕ0 is the volume content of clusters in the medium; ρ1 and ρ2 are the densities of the liquid and gas,
respectively. In contrast to a homogeneous bubbly medium, the dispersion in a gas–liquid medium with a cluster
structure is determined by the cluster radius R and the volume content of clusters in the medium ϕ0 [21]. As
for homogeneous bubbly media [3], the shape of the first oscillation of the shock wave is similar to the shape of
the soliton for low wave amplitudes. Deviation of the experimental profile from the predicted soliton shape can
be caused by two reasons. First, probably, the oscillating shock wave has not been completely formed at these
distances. Second, the condition of the long-wave approximation for the Boussinesq equation in gas–liquid media
(namely, the wave length should be much greater than the cluster size and the distance between the clusters) was
not satisfied in the experiments.

With increasing amplitude of the wave entering the medium, the duration of oscillations decreases, and the
oscillating shock wave starts decomposing into solitary waves. The solitary waves in Fig. 2b are still connected
to each other, and their amplitude is almost twice as high as the mean pressure in the incident shock wave. As
a result of nonlinear reflection from the rigid bottom, the wave amplitude substantially increases (see Fig. 2b;
x = 0.495 m). A typical feature of high-amplitude waves is the formation of a precursor ahead of the main signal
(Fig. 2b; x = 0.205 and 0.305 m). Note that this precursor differs from the precursor in bubbly media (the latter
propagates with a velocity of sound in a pure liquid). The precursor in the present work is formed, apparently,
by high-frequency oscillations formed owing to nonlinear oscillations of clusters in the liquid and having a higher
velocity than the velocity of the main wave. The precursor velocity is close to the adiabatic value, whereas the main
wave velocity, as is shown below, equals the isothermal velocity.

As the initial volume content of the gas in the cluster decreases, the duration of oscillations in the oscillating
shock wave decreases for identical wave amplitudes (Figs. 2c and 2a), whereas the duration of oscillations in a
homogeneous bubbly structure is independent of the volume gas content and is determined only by the bubble size
and wave amplitude [3]. Curve 2 in Fig. 2c shows the predicted shape of the soliton. The structure of the first
oscillation of the shock wave is close to the soliton shape for low wave amplitudes.

As the wave amplitude increases in a medium with a low initial volume content of the gas in the cluster,
the effect of nonlinearity prevails over dispersion, and the wave entering the medium practically retains its stepwise
shape during its propagation (Fig. 2d).

Figure 3 shows the shock-wave velocity U in a gas–liquid medium with a cluster structure as a function
of shock-wave amplitude (c0 is the velocity of sound in the gas–liquid medium and c1 is the velocity of sound in
the liquid). Points 1 and 2 refer to the experimental values of shock-wave velocity in a medium with a rather
high volume content of the gas, where the compressibility of the liquid does not exert any significant effect on
wave velocity. The shock-wave velocity was determined by the time of arrival of the peak of the first oscillation
at two neighboring gauges (G3 and G4) and by the distance between the gauges. The velocity of sound in the
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Fig. 3. Shock-wave velocity versus its amplitude for ϕ0 = 7.5% and ϕc = 8.4–9.8% (points 1 and 2
and curve 3) and ϕc = 0.38% (points 4 and 5 and curves 6 and 7): points 1, 2, 4, and 5 refer to the
experimental data, curve 3 refer to the calculation by model (5), and curves 6 and 7 refer to the
calculations by models (6) and (7), respectively.

gas–liquid medium with a cluster structure for the isothermal behavior of the gas in the bubbles was calculated by
the homogeneous [3] and cluster [4] models, respectively:

c0 =
( P0

(ρ1(1− ϕ0ϕc) + ρ2ϕ0ϕc)ϕ0ϕc

)0.5

; (3)

c0 =
( P0

(ρ1(1− ϕ0) + ρ2ϕ0)ϕ0ϕc

)0.5

. (4)

Points 1 and 2 show the results obtained by the homogeneous model (3) and by the cluster model (4), respectively.
For low values of the volume content of clusters in the medium ϕ0, the velocities of sound predicted by models (3)
and (4) are close to each other; correspondingly, the experimental points 1 and 2 lie close for the corresponding
wave amplitudes. Curve 3 shows the shock-wave velocity calculated by the isothermal model [3, 4]:

U/c0 = (1 + ∆P0/P0)0.5. (5)

The isothermal approximation for the shock-wave velocity (5) offers an adequate description of the experimental
data (points 1 and 2). Indeed, if we estimate the time of thermal relaxation of the gas in the bubbles contained
in the cluster as τ0 = d2/(4π2a) [4], we find that the duration of the leading front of the oscillating shock wave is
much greater than τ0 (a is the thermal diffusivity of the gas in the bubbles). Hence, the behavior of the gas in the
bubbles in the leading front of the wave is close to the isothermal one. It is impossible to determine which of the
models for the velocity of sound, (3) or (4), is in better agreement with the experimental data because the difference
between them is within the error of the wave-velocity measurement.

Points 4 and 5 show the experimental values of the shock-wave velocity in the medium with a rather low
volume content of the gas, where the liquid compressibility substantially affects the wave velocity. The shock-wave
velocity was determined by the time of arrival of the beginning of the leading shock-wave front (points 4) and
the peak of the first oscillation (points 5) to two neighboring gauges (G3 and G4). Curves 6 and 7 show the
shock-wave velocity calculated with allowance for the liquid compressibility by the adiabatic [22] and isothermal [4]
approximations, respectively:

U

c1
=

1
c1

( ∆P0

ρ1(1− ϕ0ϕc)

(
1− ϕ0ϕc

(
1 +

∆P0

P0

)−1/γ

− (1− ϕ0ϕc)
(
1 +

γ∗∆P0

ρ1c2
1

)−1/γ∗)−1)0.5

; (6)

U

c1
=

1
c1

( P0 + ∆P0

ρ1(1− ϕ0ϕc)ϕ0ϕc

1 + ∆P0/(ρ1c
2
1)

(1 + ∆P0/P0 − ϕ0ϕc)P0/(ρ1c2
1ϕ0ϕc)

)0.5

(7)
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Fig. 4. Half-width of the pressure wave versus its amplitude: points 1–3, 6, and 8
show the experimental data for ϕ0 = 7.5% and ϕc = 8.4–9.8 (1) and 10.3% (2),
ϕ0 = 18.7% and ϕc = 10.3% (3), ϕ0 = 7.5% and ϕc = 0.38% (6), and an isolated
cluster for ϕc = 12% (8); curves 4 and 7 refer to the results calculated by Eq. (2)
for ϕc = 9.1 and 0.38%, respectively; curve 5 refers to the calculation by the formula
∆t = 0.5∆tB.

(γ and γ∗ are the ratios of specific heats for the gas and liquid, respectively). The experimental values of velocity
determined by the peak of the first oscillation of the shock wave (points 5) are adequately described by the isothermal
approximation (7), whereas points 4 (with the velocity determined by the beginning of the shock-wave front) are
located closer to the adiabatic approximation (6). The reason is that the behavior of the gas in the bubbles at
the initial part of the leading front of the shock wave is close to the adiabatic one. Deviation of the experimental
points 4 from the calculated curve 6 with increasing wave amplitude seems to be related to the decrease in the initial
volume content of the gas in the cluster in the course of the experiment, i.e., part of the gas bubbles evolve from
the cluster after a shock wave with a fairly high amplitude passes over the liquid, and the value of ϕc decreases.

Points 1–3 and 6 in Fig. 4 show the measured half-width of the first oscillation of the shock wave in a
gas–liquid medium with a cluster structure. As for the Boussinesq soliton, the half-width of the first oscillation is
the wave length from the level of 0.42∆Pmax to the maximum value of pressure in the first oscillation ∆Pmax. The
wave half-width was measured only by the gauges opposite the third and fourth clusters counted from the point
of the wave entrance into the medium, i.e., when the oscillating wave is almost completely formed. Points 1 and
6 show the data for the cluster positioning in Fig. 1. Points 2 refer to the half-width of the wave from the fourth
gauge in a medium without the third cluster. Points 3 refer to readings of the second gauge for a medium with
a rather high volume content of clusters (the centers of the clusters are located at a distance of 40 mm from each
other, and the first cluster on the top retains its position). Curves 4 and 7 show the soliton half-width calculated
by Eq. (2) for medium parameters corresponding to the test conditions. For rather homogeneous media with a
cluster structure (with the clusters located uniformly along the test section in the liquid), the half-widths of the
first oscillations are identical (points 1 and 3). Deviation of points 2 from experimental data 1 and 3 is apparently
caused by the influence of substantial nonuniformity of the cluster structure (the third cluster was removed from the
medium). In the case of low wave amplitudes (∆Pmax/P0 6 1), as for homogeneous bubbly media, the calculation
by Eq. (2) agrees with experimental data for the corresponding parameters of the medium (points 1–3 and curve 4;
points 6 and curve 7). Deviation of experimental data from the calculated results is caused, as was noted above, by
unsteadiness and violation of the long-wave approximation in experiments.

It was shown [23] that the half-width of solitary waves with the amplitude ∆Pmax/P0 > 5 in a homogeneous
bubbly media is close to 0.5∆tB. The experimental points 1 with the amplitude ∆Pmax/P0 > 5 for waves in a gas–
liquid medium with a cluster structure are also adequately generalized by the numerical dependence 5 (∆t = 0.5∆tB).
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Fig. 5. Amplitude of the first oscillation of the shock wave in a gas–liquid medium
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points 3 show the results for an isolated cluster (ϕc = 12%).

For comparison, Fig. 4 also shows the experimental values of the half-width of the solitary wave (points 8) formed
in the liquid by an isolated cluster of the same size [16]. The duration of the first oscillation of the oscillating shock
wave in a gas–liquid medium with a cluster structure (points 1) equals the duration of the solitary wave formed by
an isolated cluster in the liquid (points 8) with identical parameters of the medium and the wave.

The experimental dependences of the amplitudes of the first oscillation of the shock wave (points 1) and the
first oscillation of the wave reflected from the rigid wall (points 2) on the amplitude of the shock wave entering the
medium are plotted in Fig. 5. The amplitude of the first oscillation of the incident shock wave was measured only by
the gauges opposite the third and fourth clusters, i.e., when the oscillating shock wave is almost completely formed.
As for homogeneous bubbly media [3, 23], the amplitude of the first oscillation (points 1) is 1.5 times higher than
the mean pressure in the shock wave for low wave amplitudes (∆Pmax/P0 6 1). With increasing amplitude of the
incident shock wave, the values of ∆Pmax/∆P0 increase, which is also in agreement with the data of [21] for bubbly
media. Note, the experimental values of the amplitude of a solitary pressure wave formed by an isolated cluster
(points 3) for the same parameters of the medium and the wave [18] lie substantially higher than points 1. In the
case of low wave amplitudes ∆Pmax/P0 6 1, the amplitude of the wave reflected from the solid bottom is twice the
amplitude of the incident wave, which corresponds to a linear reflection law (points 2). As the amplitude of the
incident shock wave increases, the reflection law becomes nonlinear.

Let us consider the structure of the pressure wave far from the clusters. In these experiments, the third
cluster from the point of the wave entrance into the medium was removed, and the third gauge measured the profile
of the pressure wave in the medium at a distance from the neighboring clusters much greater than the cluster size
(see Fig. 1). Figure 6a shows the profiles of the pressure waves registered by the gauges located close to clusters
(curves 1 and 3) and by the gauge located far from the clusters (curve 2) for a low amplitude of the shock wave
entering the medium. It is seen that an oscillating shock wave is formed near the gauges located in a close vicinity
of the clusters (curves 1 and 3), whereas the shape of the wave between the clusters corresponds to superposition
of waves from the neighboring clusters (curve 2). With increasing amplitude, secondary reflection of waves formed
by the neighboring clusters from each other starts to play an important role. As a result, pressure oscillations
appear on the wave profiles near the clusters (curves 1 and 3 in Fig. 6b), and the wave profile registered by the
gauge between the clusters consists of high-amplitude high-frequency pressure oscillations (curve 2 in Fig. 6b). The
period of oscillations corresponds to the time needed for the wave to travel back and forth between the neighboring
clusters with the velocity of sound in the liquid.
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in a gas–liquid medium with a cluster structure: ϕ0 = 11.3%, ϕc = 10.8%, and
∆P0 = 0.81 MPa.

It is known that pressure oscillations in an oscillating shock wave in homogeneous bubbly liquids decay behind
the leading front of the shock wave [3] because of dissipative losses in the medium. Figure 7 shows the structure
of a moderate-amplitude oscillating shock wave in a gas–liquid medium with a cluster structure. A growth of the
amplitude of pressure oscillations in the wave behind the leading front is observed instead of decaying oscillations.
This can be related to resonant oscillations of clusters in the liquid. Under certain parameters of the medium and
the wave, oscillations of three neighboring clusters proceed as follows. The first and last clusters oscillate in phase
with each other and in antiphase with the cluster located between them. This increases the amplitude of oscillations
of the cluster in the middle and, correspondingly, the amplitude of oscillations in the shock wave.

Thus, experimental data have been obtained on velocity and structure of moderate-amplitude shock waves
in a liquid containing spherical bubbly clusters, and a comparison with theoretical models has been performed. For
low-amplitude waves, the Boussinesq equation offers an adequate description of the structure of the leading front
of the oscillating shock wave. It is also shown that resonant interaction of bubbly clusters in the wave can increase
the amplitude of oscillations in the shock wave.

This work was supported by the Russian Foundation for Basic Research (Grant No. 03-01-00211), Grant of
the President of the Russian Federation for Leading Scientific Schools (Grant No. NSh-523.2003.1), and Integration
Project No. 22 of the Siberian Division of the Russian Academy of Sciences.

353



REFERENCES

1. J. K. Batchelor, “Compression waves in a suspension of gas bubbles in a liquid,” Mechanics (collected scientific
papers) [Russian translation], Vol. 109, No. 3, 67–84 (1968).

2. L. Van Wijngaarden, “On the equation of motion for mixtures of liquid and gas bubbles,” J. Fluid Mech., 33,
465–474 (1968).

3. V. E. Nakoryakov, B. G. Pokusaev, and I. R. Shreiber, Wave Dynamics of Gas– and Vapor–Liquid Media [in
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10. V. G. Gasenko, V. E. Dontsov, V. V. Kuznetsov, and V. E. Nakoryakov, “Oscillating solitary waves in a liquid

with gas bubbles,” Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekh. Nauk, 6, No. 21, 43–45 (1987).
11. V. E. Nakoryakov and V. E. Dontsov, “Multisolitons in a liquid with gas bubbles of two different sizes,” Dokl.

Ross. Akad. Nauk, 378, No. 4, 483–486 (2001).
12. V. E. Nakoryakov, V. E. Dontsov, and V. G. Gasenco, “On the structure of complicated shape solitary waves

in a liquid with gas bubbles due two different bubbles sizes,” in: Poromechanics 2, Proc. of the 2nd Biot Conf.
on Poromechanic (Grenoble, France, August 26–28, 2002), A. A. Balkema Publ., Lisse (2002), pp. 715–721.

13. A. E. Beylich and A. Gulhan, “On the structure of nonlinear waves in liquids with gas bubbles,” Phys. Fluids A,
2, No. 8, 1412–1428 (1990).

14. M. Kameda, N. Shimaura, F. Higashino, and Y. Matsumoto, “Shock waves in a uniform bubbly flow,” Phys.
Fluids, 10, No. 10, 2661–2668 (1998).

15. V. E. Nakoryakov and V. E. Dontsov, “Decay of pressure waves in a liquid with bubbles of two gases,” Dokl.
Ross. Akad. Nauk, 382, No. 5, 637–640 (2002).

16. V. E. Nakoryakov and V. E. Dontsov, “Pressure waves in a stratified medium containing a liquid and a gas–liquid
mixture,” Dokl. Ross. Akad. Nauk, 386, No. 1, 48–50 (2002).

17. V. K. Kedrinskii, Yu. I. Shokin, V. A. Vshivkov, et al., “Generation of shock waves in a liquid by spherical
bubbly clusters,” Dokl. Ross. Akad. Nauk, 381, No. 6, 773–776 (2001).

18. V. E. Nakoryakov and V. E. Dontsov, “Interaction of a shock wave with a spherical bubbly cluster,” Dokl. Ross.
Akad. Nauk, 391, No. 2, 199–202 (2003).

19. A. V. Lykov, Theory of Heat Conduction [in Russian], Gostekhteorizdat, Leningrad (1952).
20. V. E. Dontsov and V. E. Nakoryakov, “Enhancement of shock waves in a porous medium saturated with liquid

having soluble-gas bubbles,” Int. J. Multiphase Flow, 27, No. 12, 2023–2041 (2001).
21. S. I. Lezhnin, “Wave dynamics of two-phase media with a complicated internal structure,” Doct. Dissertation

in Phys. Math. Sci., Novosibirsk (1994).
22. G. M. Lyakhov, Waves in Soils and Porous Multispecies Media [in Russian], Nauka, Moscow (1982).
23. V. E. Nakoryakov, V. E. Kuznetsov, V. E. Dontsov, and P. G. Markov, “Pressure waves of moderate intensity

in liquid with gas bubbles,” Int. J. Multiphase Flow, 16, No. 5, 741–749 (1990).

354


